3.250 \(\int \frac{(d x)^m}{a+b x^3+c x^6} \, dx\)

Optimal. Leaf size=173 \[ \frac{2 c (d x)^{m+1} \, _2F_1\left (1,\frac{m+1}{3};\frac{m+4}{3};-\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}\right )}{d (m+1) \sqrt{b^2-4 a c} \left (b-\sqrt{b^2-4 a c}\right )}-\frac{2 c (d x)^{m+1} \, _2F_1\left (1,\frac{m+1}{3};\frac{m+4}{3};-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )}{d (m+1) \sqrt{b^2-4 a c} \left (\sqrt{b^2-4 a c}+b\right )} \]

[Out]

(2*c*(d*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/3, (4 + m)/3, (-2*c*x^3)/(b - Sqrt[b^2 - 4*a*c])])/(Sqrt[b^2 -
 4*a*c]*(b - Sqrt[b^2 - 4*a*c])*d*(1 + m)) - (2*c*(d*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/3, (4 + m)/3, (-2
*c*x^3)/(b + Sqrt[b^2 - 4*a*c])])/(Sqrt[b^2 - 4*a*c]*(b + Sqrt[b^2 - 4*a*c])*d*(1 + m))

________________________________________________________________________________________

Rubi [A]  time = 0.237544, antiderivative size = 173, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1, Rules used = {1375, 364} \[ \frac{2 c (d x)^{m+1} \, _2F_1\left (1,\frac{m+1}{3};\frac{m+4}{3};-\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}\right )}{d (m+1) \sqrt{b^2-4 a c} \left (b-\sqrt{b^2-4 a c}\right )}-\frac{2 c (d x)^{m+1} \, _2F_1\left (1,\frac{m+1}{3};\frac{m+4}{3};-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )}{d (m+1) \sqrt{b^2-4 a c} \left (\sqrt{b^2-4 a c}+b\right )} \]

Antiderivative was successfully verified.

[In]

Int[(d*x)^m/(a + b*x^3 + c*x^6),x]

[Out]

(2*c*(d*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/3, (4 + m)/3, (-2*c*x^3)/(b - Sqrt[b^2 - 4*a*c])])/(Sqrt[b^2 -
 4*a*c]*(b - Sqrt[b^2 - 4*a*c])*d*(1 + m)) - (2*c*(d*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/3, (4 + m)/3, (-2
*c*x^3)/(b + Sqrt[b^2 - 4*a*c])])/(Sqrt[b^2 - 4*a*c]*(b + Sqrt[b^2 - 4*a*c])*d*(1 + m))

Rule 1375

Int[((d_.)*(x_))^(m_.)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]
}, Dist[c/q, Int[(d*x)^m/(b/2 - q/2 + c*x^n), x], x] - Dist[c/q, Int[(d*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; F
reeQ[{a, b, c, d, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{(d x)^m}{a+b x^3+c x^6} \, dx &=\frac{c \int \frac{(d x)^m}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^3} \, dx}{\sqrt{b^2-4 a c}}-\frac{c \int \frac{(d x)^m}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^3} \, dx}{\sqrt{b^2-4 a c}}\\ &=\frac{2 c (d x)^{1+m} \, _2F_1\left (1,\frac{1+m}{3};\frac{4+m}{3};-\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c} \left (b-\sqrt{b^2-4 a c}\right ) d (1+m)}-\frac{2 c (d x)^{1+m} \, _2F_1\left (1,\frac{1+m}{3};\frac{4+m}{3};-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c} \left (b+\sqrt{b^2-4 a c}\right ) d (1+m)}\\ \end{align*}

Mathematica [C]  time = 0.0433496, size = 59, normalized size = 0.34 \[ \frac{x (d x)^m \text{RootSum}\left [\text{$\#$1}^3 b+\text{$\#$1}^6 c+a\& ,\frac{\, _2F_1\left (1,m+1;m+2;\frac{x}{\text{$\#$1}}\right )}{\text{$\#$1}^3 b+2 a}\& \right ]}{3 (m+1)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d*x)^m/(a + b*x^3 + c*x^6),x]

[Out]

(x*(d*x)^m*RootSum[a + b*#1^3 + c*#1^6 & , Hypergeometric2F1[1, 1 + m, 2 + m, x/#1]/(2*a + b*#1^3) & ])/(3*(1
+ m))

________________________________________________________________________________________

Maple [F]  time = 0.028, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( dx \right ) ^{m}}{c{x}^{6}+b{x}^{3}+a}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m/(c*x^6+b*x^3+a),x)

[Out]

int((d*x)^m/(c*x^6+b*x^3+a),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d x\right )^{m}}{c x^{6} + b x^{3} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m/(c*x^6+b*x^3+a),x, algorithm="maxima")

[Out]

integrate((d*x)^m/(c*x^6 + b*x^3 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\left (d x\right )^{m}}{c x^{6} + b x^{3} + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m/(c*x^6+b*x^3+a),x, algorithm="fricas")

[Out]

integral((d*x)^m/(c*x^6 + b*x^3 + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**m/(c*x**6+b*x**3+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d x\right )^{m}}{c x^{6} + b x^{3} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m/(c*x^6+b*x^3+a),x, algorithm="giac")

[Out]

integrate((d*x)^m/(c*x^6 + b*x^3 + a), x)